27 сентября 2020
Группа учёных из Калифорнийского университета в Санта-Круз (UCSC) разработала перспективное биоэлектронное устройство. С помощью электроники и благодаря обратной связи на основе машинного обучения учёные смогли задать и часами удерживать определённое мембранное напряжение в стволовых клетках человека. Это изобретение позволит управлять ростом и специализацией стволовых клеток, что ведёт к прогрессу в регенеративной медицине.
Массив протонных насосов для контроля мембранного напряжения (UCSC)
Живая клетка человека — это устойчивая саморегулирующаяся система, а иначе и не может быть. Причём она сама себе на уме, даже если больна. Поэтому изменить гомеостаз клетки представляется сложной задачей, которую учёные всё-таки смогли решить. Сделать это помогла контролируемая алгоритмами машинного обучения электроника, которая поддерживала заданный учёными баланс ионов в непосредственной близости от культивируемых стволовых клеток человека.
Поясним, мембранное напряжение формируется как разность потенциалов между внутренней средой живой клетки и её ближним окружением. Эту разность потенциалов — довольно строго определённую для разных типов клеток — поддерживают белки в составе клеточной мембраны. Для этого белки создают в мембране ионные каналы, что ведёт к восстановлению баланса (напряжения) при нарушении концентрации ионов внутри или снаружи клетки. Попытка изменить концентрацию ионов (и мембранное напряжение) вызывает обратную реакцию клетки и сводится на нет. Во всяком случае, длительно удерживать точное напряжение клеточной мембраны простым способом не получится.
Учёные решили задачу следующим образом. Они создали вокруг колонии стволовых клеток систему протонных насосов, с помощью которых добавляли или удаляли ионы водорода из раствора в непосредственной близости от культивируемых стволовых клеток. Эта система управлялась самообучающимся алгоритмом ML. Причём система не проходила предварительного обучения на моделях, а училась на ходу по мере наблюдения за поведением клеток и оценки концентрации раствора. За мембранным напряжением система следила визуально, для чего учёные так модифицировали белок мембраны, чтобы он флюоресцировал в зависимости от величины мембранного напряжения. Тем самым алгоритм получил систему обратной связи и мог оценивать своё влияние на потенциал мембраны.

В ходе поставленного эксперимента учёные смогли целых десять часов поддерживать заданный уровень мембранного напряжения у живых клеток. Для работы со стволовыми клетками — это ключевое достижение, хотя в поставленном опыте исследователи не стремились добиться дифференцировки клеток. Но они показали, что процессом выбора специализации стволовых клеток можно управлять. Проект, кстати, финансируют военные США. Однако управляемая регенерация тканей — это то, что будет полезно каждому человеку на Земле.
Хочешь узнать больше - читай отзывы
← Вернуться на предыдущую страницу
Діра в бюджеті звужує Путіну "вікно" в мирній угоді 2 февраля 2026
Умови, запропоновані Трампом для припинення війни, є найкращими для російського диктатора за всі чотири роки.
"Клоун-націоналіст": у файлах Епштейна згадали Жириновського 2 февраля 2026
У самих матеріалах лідера ЛДПР називають політичним діячем, який протистоїть Зюганову.
Samsung представила перший у світі дисплей на кольорових електронних чорнилах E-Ink в корпусі з фитопланктону 2 февраля 2026
Практично весь навколишній нас пластик виробляється з органіки. Але це може бути «брудна» органіка — нафта або вугілля, або «чиста» — рослинного походження. У наш час публічні компанії прагнуть бути екологічними в усьому, включаючи виробничі процеси. Чи можуть бути перебільшення в питаннях екології? Принаймні, компанія Samsung Electronics подбала про чистоту пластику для корпусу дисплея, щоб зробити світ трохи кращим.