9 января 2022
Инфракрасное излучение несёт богатую информацию о мире и об объектах в нём, но глаз человека и обычные датчики изображения воспринять её не могут. Тепловизоры способны работать в этом диапазоне, но это сложные, громоздкие и дорогие устройства. Исследователи давно бьются над задачей создать компактные датчики инфракрасного зрения, и новое исследование международной группы учёных готово предложить интересное решение.
Источник изображения: Nicolas Antille, Wen Chen, Christophe Galland
Глаз и обычные датчики изображения в среднем чувствительны к диапазону частот от 400 до 750 ТГц. Частота излучения нагретого до 20 °C тела, например, излучает с частотой около 10 ТГц. Казалось бы, достаточно создать устройства с повышением частоты падающего инфракрасного излучения до частот видимого диапазона, и проблема решена. Но не тут-то было!
Частота электромагнитного излучения и, как частного случая, инфракрасного и видимого света — это фундаментальная характеристика, изменить которую простыми средствами мешает закон сохранения энергии. Просто отразив или пропустив излучение через что-то, частоту повысить нельзя. Необходимо накачать излучение энергией из внешнего источника. Чтобы изображение сохранило информацию и стало видимым, накачивать энергией необходимо каждый пиксель преобразователя и делать это согласованно по всему полю захвата изображения.
Международная группа учёных из Федеральной политехнической школы Лозанны (EPFL, Швейцария), Уханьского технологического института, Политехнического университета Валенсии и исследовательского центра AMOLF (Нидерланды) предложила молекулярную микроструктуру для прямого преобразования инфракрасного излучения в видимое. В этой микроструктуре падающее инфракрасное излучение возбуждает колебание молекул. Одновременно на те же молекулы подаётся лазерный луч более высокой частоты, который доставляет в систему колебаний дополнительную энергию и повышает частоту колебаний молекул до частоты видимого спектра, который фиксируется обыкновенными датчиками изображений.
Учёные заявляют, что процессы накачки и преобразования происходят согласованно по всей площади датчика изображения, что позволяет наблюдать картину без искажений при преобразовании. Для усиления процесса фокусировки падающего на молекулы излучения учёные придумали систему канавок и наноразмерных частиц из золота. Такие микроструктуры можно представить как пиксели на датчике изображения и получить в итоге датчики для прямого преобразования инфракрасного света в видимый свет.
Изобретение найдёт применение не только в компактных тепловизорах. От таких датчиков можно ожидать практической спектроскопии. К примеру, спектрометрами можно вооружить смартфоны и с их помощью определять качество продуктов, свойства биоматериалов или химические составы веществ.
Статья об исследовании опубликована в журнале Science.
Хочешь узнать больше - читай отзывы
← Вернуться на предыдущую страницу
Журналістка висміяла курс з етикету Ольги Фреймут, який придбала за пʼять тисяч грн 23 ноября 2024
Журналістка висміяла курс з етикету Ольги Фреймут, який придбала за пʼять тисяч грн: чого навчає головний "Ревізор" країни Колишня ведуча рекомендує учням "молитися"
Шматок Марса, що давно впав на Землю, пролив світло на історію води на Червоній планеті 23 ноября 2024
Шматок Марса, що давно впав на Землю, пролив світло на історію води на Червоній планеті.
Селена Гомес у екстравагантних луках прикрасила сторінки глянцю 23 ноября 2024
Гомес у сміливих образах