Фізики виявили, що звук справді передається у вакуумі, але зовсім не так, як показують у кіно

16 августа 2023

Два фінські фізики з'ясували умови, за яких звук може передаватися через ідеальний вакуум. Ефект схожий на квантове тунелювання, але в справу вступає звичайна фізика і деяке обладнання. Відкриття може допомогти у розробці MEMS-електроніки та в системах тепловідведення.

Источник изображения: Pixabay

 

Джерело зображення: Pixabay
Жуоран Генг (Zhuoran Geng) та Іларі Маасилта (Ilari Maasilta) з Університету Ювяскюля (Фінляндія) стверджують, що їхня робота відображає перший суворий доказ повного акустичного тунелювання у вакуумі. Все, що потрібно для експерименту, - це два п'єзоелектричні датчики, кожен з яких здатний перетворювати звукові хвилі на електричну напругу (і навпаки). При цьому п'єзоелементи повинні бути розділені зазором, меншим, ніж довжина хвилі звуку, що передається. В результаті звук «перейде» від одного елемента до іншого з повною силою, якщо дотриматися необхідних умов.
Як ми знаємо, для поширення звуку необхідне середовище. Звук передається рахунок послідовної передачі коливань атомів і молекул середовища сусіднім часткам. Безпосередньо люди чують (відчувають) коливання повітря чутливою мембраною у вухах. Таких умов, очевидно, немає в чистому вакуумі — там нема чого вагатися і, отже, нема чого поширювати звукові хвилі. Але є лазівка — у вакуумі можуть поширюватись електромагнітні поля, а це шанс для п'єзоелектричних кристалів, які в процесі деформації (під впливом акустичних хвиль) виробляють електрику. А де електрика, там і поля.
Вчені використовували як п'єзоелементи оксид цинку. Звукове коливання створювало механічну напругу в матеріалі, і це породжувало в ньому електричну напругу і, за певних умов, призводило до появи електромагнітного поля. Якщо в радіусі дії поля першого кристала знаходився другий кристал, то він перетворював поле в електричну енергію і назад на механічну — фактично у вихідний акустичний сигнал, який таким нехитрим (або хитрим) чином долав чистий вакуум. Ширина зазору при цьому не повинна перевищувати довжини звукової хвилі, що передається.
Джерело зображення: Pixabay
Жуоран Генг (Zhuoran Geng) та Іларі Маасилта (Ilari Maasilta) з Університету Ювяскюля (Фінляндія) стверджують, що їхня робота відображає перший суворий доказ повного акустичного тунелювання у вакуумі. Все, що потрібно для експерименту, - це два п'єзоелектричні датчики, кожен з яких здатний перетворювати звукові хвилі на електричну напругу (і навпаки). При цьому п'єзоелементи повинні бути розділені зазором, меншим, ніж довжина хвилі звуку, що передається. В результаті звук «перейде» від одного елемента до іншого з повною силою, якщо дотриматися необхідних умов.
Як ми знаємо, для поширення звуку необхідне середовище. Звук передається рахунок послідовної передачі коливань атомів і молекул середовища сусіднім часткам. Безпосередньо люди чують (відчувають) коливання повітря чутливою мембраною у вухах. Таких умов, очевидно, немає в чистому вакуумі — там нема чого вагатися і, отже, нема чого поширювати звукові хвилі. Але є лазівка — у вакуумі можуть поширюватись електромагнітні поля, а це шанс для п'єзоелектричних кристалів, які в процесі деформації (під впливом акустичних хвиль) виробляють електрику. А де електрика, там і поля.
Вчені використовували як п'єзоелементи оксид цинку. Звукове коливання створювало механічну напругу в матеріалі, і це породжувало в ньому електричну напругу і, за певних умов, призводило до появи електромагнітного поля. Якщо в радіусі дії поля першого кристала знаходився другий кристал, то він перетворював поле в електричну енергію і назад на механічну — фактично у вихідний акустичний сигнал, який таким нехитрим (або хитрим) чином долав чистий вакуум. Ширина зазору при цьому не повинна перевищувати довжини звукової хвилі, що передається.

 

Источник изображения: Geng and Maasilta, Commun. Phys., 2023)

Джерело зображення: Geng and Maasilta, Commun. Phys., 2023)

Також вчені показали, що ефект залежить від частоти звуку. При дотриманні необхідного проміжку він працює і для ультразвуку і для надзвукових частот. Виявлене явище може використовуватися як для практичних рішень, так і імітації квантового тунелювання, щоб допомогти в розвитку квантового зв'язку, наприклад.

«У більшості випадків ефект невеликий, але ми також виявили ситуації, коли повна енергія хвилі переходить через вакуум зі 100% ефективністю, без будь-яких віддзеркалень, – розповів Маасилта. — Таким чином, це явище може знайти застосування в мікроелектромеханічних компонентах (MEMS, технологія смартфонів) та в управлінні теплом».

В останньому випадку, очевидно, вчений має на увазі відведення тепла від приладів, що знаходяться у вакуумі, що може знайти застосування в космічній техніці і не тільки. Про роботу учені розповіли у статті у журналі Communications Physics.

← Вернуться на предыдущую страницу

Читайте также:

Меган Маркл замилувала танцем з принцом Гаррі, який зняла їхня 4-річна дочка 17 января 2026

Дружина принца Гаррі, герцогиня Сассекська Меган Маркл замилувала мережу романтичним відео з ним, яке зняла їхня 4-річна донечка Лілібет. 

Названо 5 зимових звичок, які шкодять здоров’ю 17 января 2026

Зима традиційно вважається сезоном, коли організм працює на межі можливостей. Холод, короткий день, вогкість, часті перепади температури та постійний стрес посилюють навантаження на імунітет і серце.

OpenAI запустила дешеву підписку на ChatGPT по всьому світу 17 января 2026

OpenAI оголосила про глобальне розширення доступу до більш дешевої платної підписки ChatGPT Go, яка тепер доступна по всьому світу. Раніше цей тариф був протестований в Індії в серпні, а потім з'явився ще в 170 країнах. У компанії заявили, що на ринках, де Go вже був доступний, спостерігалося активне використання сервісу для таких завдань, як письмо, навчання, створення зображень та інших задач.

 

Вас могут заинтересовать эти отзывы

ShellNail 5.0
ShellNail

Отзывов: 1

VIVA  
VIVA

Отзывов: 1

Каталог отзывов





×

Выберите область поиска

  • Авто
  • Одяг / аксесуари
  • Роботодавці
  • Інше